
So�ware Development (cs2500)
Lecture 43: Making a Connection

M.R.C. van Dongen

February 7, 2011

Contents
1 Outline 2

2 Making Connections 2
2.1 Bird’s Eye View . 2
2.2 Making the Connection . 2
2.3 Reading from the Socket . 3
2.4 Writing to the Socket . 3
2.5 �e Advisor . 4
2.6 �e Advisee . 5
2.7 Running the Application . 6

3 �reads 6
3.1 What are �reads? . 7
3.2 Creating �reads . 7

4 Race Conditions 8
4.1 Example . 8
4.2 Avoiding Race Conditions . 8
4.3 Synchronizing Methods . 10

5 Deadlock 10

6 �eChat Application 10

7 ForWednesday 11

8 Acknowledgements 11

1

1 Outline
So far all our Java applications have used a single program. �is lecture studies applications involving
multiple programs. Each program involves a process which runs the program. We shall implement an
application which lets two programs communicate. As we shall see we shall need several mini-processes
within some programs: threads. As part of this we shall study the Runnable interface.

2 Making Connections
�is lecture we shall implement a simple chat server application. �e server program starts. Chatter
programs can connect to the server. Chatters can send messages to the server. �e server broadcasts
all messages to its chatters. Upon receiving a message the chatters display it. To get started we shall
implement a simple advise server.

Our advice server application involves an advisor and one adviseeprogram. �e advisor program
starts. �e advisee program requests a connection. �e advisor establishes the connection. Next the
advisor and advisee communicate. �e communication involves writer and reader objects sitting on
top of the connection. A�er establishing the connectionthe advisor sends some advice, and closes the
connection.

2.1 Bird’s Eye View
�e server and client communication depends on the the server’s IP address. �ere are three ingredients
to communications.

Connect: �e client and server establish a Socket connection. �is is done as follows. �e client requests
the connection to the server’s IP address at some TCP port. �e server accepts the connection.

Send: �e server sends a message. �is is done by writing to a PrintWriter object.

Receive: �e client receiver a message. �is is done by reading from a BufferedReader object.

In general, writing to the server and reading from the client is also possible.

2.2 Making the Socket Connection
�e socket connection is established by creating a Socket object. Creating the object formalises estab-
lishing the connection. A�er creating the connection both sides of the connection are aware of each
other. �e Socket class gives them communication for free.

�e following shows how to create the Socket object:
Socket chatsocket = new Socket(〈IP address〉, 〈port〉); Java

�e 〈IP address〉 is a String, e.g. "196.164.1.103". It uniquely identi�es the server’s machine. �e
〈port〉 is an int representing the TCP port on the server’s machine. �e TCP port uniquely identi�es some
sevice on the server. For example, telnet runs on Port 23, ftp on Port 20, …. Valid ports are 0–65535.
Ports 0–1023 are reserved.

2

2.3 Reading from the Socket
Reading from the Socket is easy. It involves a few steps.

1. Turn the Socket into an InputStream:

InputStream is = socket.getInputStream(); Java

2. Turn the InputStream into an InputStreamReader:

InputStreamReader isr = new InputStreamReader(is); Java

3. Turn the InputStreamReader into a BufferedReader:

BufferedReader reader = new BufferedReader(isr); Java

4. Read:

String string = reader.readLine(); Java

2.4 Writing to the Socket
Writing to the Socket works in a similar way as reading from the socket. It involves the following steps.

1. Turn the Socket into an OutputStream:

OutputStream os = socket.getOutputStream(); Java

2. Turn the OutputStream into a PrintWriter:

PrintWriter writer = new PrintWriter(os); Java

3. Write:

writer.printLine("Hello world"); Java

�e PrintWriter is a bu�ered writer. Text written to the PrintWriter may not be written immedi-
ately. �e text may still be in the bu�er. Flushing the bu�er empties the bu�er and send it to the
client.
writer.flush(); Java

3

2.5 �e Advisor
Remember that our application involves two programs: an advice server program, and an advisee program.
�e following demonstrates how the advisor program looks. For sake of this example, the program
generates random advice.
import java.util.Random;
import java.io.*;
import java.net.*;

public class AdviceServer {
public static final int SOCKET = 5000;
private static final Random rand = new Random();
private static final String[] advices = { "Go for it.", "Don’t." };

public static void main(String[] args) {
try {

ServerSocket serverSocket = new ServerSocket(SOCKET);
while (true) {

Socket socket = serverSocket.accept();
OutputStream os = socket.getOutputStream();
PrintWriter writer = new PrintWriter(os);
String advice = getAdvice();
writer.println(advice);
writer.close();
System.out.println("Gave advice: " + advice);

}
} catch (Exception exception) {

// Omitted.
}

}
private static String getAdvice() {

return advices[rand.nextInt(advices.length)];
}

}

Java

�e server starts by creating a ServerSocket, which waits for requests to come in. �e ServerSocket
performs some operation based on that request, and then possibly returns a result to the requester. �e
number 5000 is chosen to represent the advice service on the server machine. �e server and client have
to agree on this number.

Next the server will start an in�nite loop which listens to the socket.1 �e call toserverSocket.accept(
) blocks until a client requests a connection. A call which blocks on some condition won’t return until

1A proper implementation should do something which is a bit more intelligent than an in�nite loop. For the purpose of
this lecture starting an in�nite loop is �ne because it simplies the rest of the class, allowing us to focus on what really matters.

4

the condition is met. In our case the call to serverSocket.accept() blocks until a client requests a
connection, so this means that the call won’t return until some client requests a connection.

2.6 �e Advisee
�e following is the Advisee class.
import java.io.*;
import java.net.*;

public class Advisee {
private static final IP_ADDRESS = "127.0.1.1";

public static void main(String[] args) {
try {

Thread.sleep(10000);
Socket socket = new Socket(IP_ADDRESS, AdviceServer.SOCKET);
InputStream is = socket.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader reader = new BufferedReader(isr);
for (int count = 0; count != 3; count++) {

String advice = reader.readLine();
System.out.println("Got advice: " + advice);

}
reader.close();

} catch (Exception exception) {
// Omitted.

}
}

}

Java

For this application we let the advisee sleep for 10 seconds. Letting the advisee sleep this long gives us
enough time to get some information with the ps command in the Unix shell.

Upon waking up, the client continues by creating its Socket by connecting to Port 5000 on IP
address 127.0.1.1. Notice that Port 5000 is the same as the one used by the server.

In our application the advisee reads three advices, prints them, and then closes the connection.

5

2.7 Running the Application

$ javac Advisee.java AdviceServer.java
$ java AdviceServer &
[1] 12442
$ java Advisee &
[2] 12456
$ ps -a

PID TTY TIME CMD
12442 pts/1 00:00:00 java
12456 pts/1 00:00:00 java
12467 pts/1 00:00:00 ps
$ Gave advice: Go for it.
Got advice: Go for it.
Got advice: null
Got advice: null
User hits return key and prompt appears
[2]+ Done java Advisee
$ ps -a

PID TTY TIME CMD
12442 pts/1 00:00:00 java
12478 pts/1 00:00:00 ps
$

Unix Session

Note that the advisee tries to get advice three times whereas the advice server only gives one advice.
�is shows why the last two advices are null. It is easy to let the advice server give more than one advice.

3 �reads
�is section is an intermediate section which studies threads, which we need for our chat application.
�e following demonstrates why we need the threads. Our chatter programs do several things: they send
messages, and they output incoming messages upon receiving them. How do we implement this? Let’s
assume we do it as follows:
while (! finished()) {
〈write message〉
〈read message〉
〈display message〉

}

Don’t Try this at Home

�is fails because the read may block. Swopping the read and write order doesn’t change much…. We
could use the ready() method to check if there’s input. �is would work, but it’s not very pretty. It’s
much better if we could do the reading and writing at the same time.

6

3.1 What are�reads?
�reads are lightweight processes. One program can run several simultaneous threads. �reads live
inside a process. �ey share the resources of the process. �ey have limited resources of their own. �ey
have a small stack to enable function calls, and a small area with private data. Since they have limited
resources, thread context switching is much faster than process context switching.

3.2 Creating�reads
�e following demonstrates how to create a Thread.
public class ThreadExample implements Runnable {

private final int delay;
private final String name;

public static void main(String[] args) {
Runnable first = new ThreadExample("first", 2);
Runnable second = new ThreadExample("second", 1);
Thread firstThread = new Thread(first);
Thread secondThread = new Thread(second);
firstThread.start();
secondThread.start();

}

private ThreadExample(String name, int delay) {
this.name = name;
this.delay = delay;

}

@Override
public void run() {

try {
Thread.sleep(delay * 1000);

} catch(Exception exception) {
// Omitted

}
System.out.println(name + " is done.");

}
}

Java

Even if you hadn’t seen the Runnable interface before, you could tell, just by looking at the example,
that it de�nes an abstract method public void run(). Without the @Override notation you might
not have been able to tell this. �is once more shows how important/useful it is to use the notation.

Note that the main() �rst runs firstThread and then runs secondThread. When we run the

7

application the following happens.
$ java threadExample
second is done.
first is done.
$

Unix Session

�e output of the program may seem weird, but it is what we should expect. (Remember that this
program is not a single-threaded sequential application.) �e �rst Thread is started �rst. �e Thread
starts by running its run() method. �e method runs concurrently with the Thread which is responsible
for running the main(). �is gives a grand total of two processes running at the moment. �e two
Threads are running concurrently but the �rst Thread goes to sleep for two seconds. While the �rst
Thread is sleeping, the main() thread starts the second Thread. �e second Thread goes to sleep for one
second and wakes up before the �rst Thread. �e rest is easy to explain ….

4 Race Conditions
A process has its own private address space. �reads don’t: they share the resources of the process they
are in. Resources can be: �les, variables, and method access. Sharing resources violates encapsulation:
it may lead to errors. To properly share their resources threads must respect resource dependencies.
Dependencies are expressed as invariants. If the threads don’t cooperate race conditions may occur. Here
a race condition is a �aw whereby:

• �e output/result of the program is ill-de�ned.

• �e program depends on the right sequence or timing of other events.

Even read/write operations to/from memory may cause race conditions if they are not properly sequenced.
(Note that race conditions may also occur if processes share resources such as �les.)

4.1 Example
Figures 1 and 2 demonstrate how a race condition may occur. In both �gures there are two threads which
carry out the same statements. However, at the end of the two programs the “output” of the program
(the values of the global variables) are di�erent. What is more, an invariant which should seemingly hold
is broken at the end of the sequence of event in Figure 2.

�e cause of the race condition is that both threads have access to the global variables (shared resources)
v1, v2, and i. Since they don’t agree on how these shared resources should be used, their “cooperation,”
which should have maintained the invariant, fails.

4.2 Avoiding Race Conditions
Java has an easy solution to prevent (some) race conditions. �e solution is to mark methods with the
keyword synchronized. If a method is synchronized then at most one Thread can be “in” the method at
the same time. (But it may call the method recursively.) When a method enters a synchronized method

8

// Shared resources
private int v1 = 0;
private int v2 = 0;
private int i = 0;

private
void f(int input) {

/* v1 == v2 */
i = input;
v1 += i;
v2 += i;
/* v1 == v2? */

}

Java
�read Statement v1 v2 i

— — 0 0 0
1 f(1) 0 0 0
1 i = input 0 0 1
1 v1 += i 1 0 1
1 v2 += i 1 1 1
2 f(2) 1 1 1
2 i = input 1 1 2
2 v1 += i 3 1 2
2 v2 += i 3 3 2

Figure 1: Multi-threaded program. �ere are two threads: �read 1 and �read 2. �read 1 carries out
the call f(1) and �read 2 carries out the call f(2). Both threads carry out the statements to the
le�. �eir execution trace is listed in the table to the right. Each thread is supposed to maintain the
invariant at the start and the end of the function f(). In this example, at most one thread is active at any
moment in time. �e number of the active process is listed in the column “�read.” �e statement which
is carried out by the active thread is listed in the column “Statement.” �e remaining three columns list
the values of the variables immediately a�er the statement. In this example the switching of the threads
is such that �read 1 is �nished before �read 2 starts. A�er this sequence of events the invariant v1 ==
v2 still holds.

// Shared resources
private int v1 = 0;
private int v2 = 0;
private int i = 0;

private
void f(int input) {

/* v1 == v2 */
i = input;
v1 += i;
v2 += i;
/* v1 == v2? */

}

Java
�read Statement v1 v2 i

— — 0 0 0
1 f(1) 0 0 0
1 i = input 0 0 1
1 v1 += i 1 0 1
2 f(2) 1 0 1
2 i = input 1 0 2
2 v1 += i 3 0 2
2 v2 += i 3 2 2
1 v2 += i 3 4 2

Figure 2: Multi-threaded program. �ere are two threads: �read 1 and �read 2. �read 1 carries out
the call f(1) and �read 2 carries out the call f(2). Both carry out the statements to the le�. �eir
execution trace is listed in the table to the right. Each thread is supposed to maintain the invariant at
the end of the function f(). �e number of the active process is listed in the column “�read.” �e
statement which is carried out by the active thread is listed in the column “Statement.” �e remaining
three columns list the values of the variables immediately a�er the statement. �is time the switching of
the threads is interleaved. A�er this sequence of events the “invariant” v1 == v2 is broken.

9

this locks the method. If a method is locked, subsequent Thread calls will be blocked. Blocked Threads
are put in a queue. When a method leaves a synchronized method this unlocks the method. When the
method is unlocked some blocked Thread is awoken and allowed to enter the method.

4.3 SynchronizingMethods
�e following demonstrates how to make a method synchronized.
〈visibility modifier〉 synchronized 〈type〉 〈name〉(〈argument list〉) {
〈Do critical stuff〉

}

Java

5 Deadlock
Another problem with concurrent programs is deadlock. A program is deadlocked when two or more
threads/processes are each waiting for each other to release a resource. Here resource may be a locked
�le, access to a printer, …, or access to a synchronized method.

�e following shows how two threads, �read 1 and �read 2, can create a deadlock situation.

• Both threads need two resources called a and b.

• For simplicity let’s assume a and b are synchronized methods.

private synchronized void a() { b(); }
private synchronized void b() { a(); }

Java

• Next we have the following scenario:

1. �read 1 calls a and is not blocked.

2. �read 2 calls b and is not blocked.

3. �read 1 attempts to call b but it’s blocked.

4. �read 2 attempts to call a but it’s blocked.

5. Neither thread will ever be unblocked: they are in deadlock.

In this case the deadlock is easily avoided by introducing a lock with allows exclusive simultaneous access
to a and b. Unfortunately, there is no general solution for deadlock prevention.

6 �eChat Application
�ere are no notes for this section. �e lecture slides show a possible implementation.

10

7 ForWednesday
Study the lecture notes and study Chapter 15.

8 Acknowledgements
Some of this lecture is based on the Java api documentation.

11

	Outline
	Making Connections
	Bird's Eye View
	Making the Connection
	Reading from the Socket
	Writing to the Socket
	The Advisor
	The Advisee
	Running the Application

	Threads
	What are Threads?
	Creating Threads

	Race Conditions
	Example
	Avoiding Race Conditions
	Synchronizing Methods

	Deadlock
	The Chat Application
	For Wednesday
	Acknowledgements

